Dermal Delivery of Protein and Peptides: Recent advances and clinical outcome

  • Divya chauhan Parul Institute of Pharmacy
  • Khushbu Patel Parul Institute of Pharmacy
  • Rabiya Sodha Parul Institute of Pharmacy
  • Kinjal Vadhwani Parul Institute of Pharmacy
  • Kapil Daxini Sigma Institute of Pharmacy
Keywords: Protein and peptide drug delivery, Polymeric nanoparticles, Brain, Ocular, Pulmonary, Hydrophobic ion-pairing (HIP) complex


Proteins and peptides are mostly desirable in many diseased states. Most widely employed method of administration for therapeutic proteins and peptides is Parenteral route. Requirement of repeated injections is because of short in vivo half-life response in poor patient compliance. Non-invasive drug delivery routes such as nasal, transdermal, oral, and pulmonary offer several benefits over parenteral administration. Low permeability and intrinsic physicochemical properties across biological membrane limits protein delivery via adjective routes. Delivering through nanostructured delivery carriers is one of the method to improve protein and peptide absorption. Polymeric nanoparticles (NPs) have illustrated significant benefits over other delivery systems. This article summarizes the application of polymeric NPs for protein and peptide drug delivery following nasal, oral, ocular, pulmonary, transdermal, and parenteral administrations. The aim of review is to highlight and explore technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the eye, the nose, the skin, and the lungs and to provide insights in advantages, practicability and limitations of recent advances.

Author Biographies

Divya chauhan, Parul Institute of Pharmacy

Parul Institute of Pharmacy,
Waghodiya, Limda, Vadodara, Gujarat

Khushbu Patel, Parul Institute of Pharmacy

Parul Institute of Pharmacy,
Waghodiya, Limda, Vadodara, Gujarat

Rabiya Sodha, Parul Institute of Pharmacy

Parul Institute of Pharmacy,
Waghodiya, Limda, Vadodara, Gujarat

Kinjal Vadhwani, Parul Institute of Pharmacy

Parul Institute of Pharmacy,
Waghodiya, Limda, Vadodara, Gujarat

Kapil Daxini, Sigma Institute of Pharmacy

Sigma Institute of Pharmacy,
Bakrol, Vadodara, Gujarat


1. Banga, A.K., Chien, Y.W. (Banga,1993). Dermal absorption of peptides and proteins. Biol. BarriersProteinDeliv., 4(77), 179–197.
2. Bergers, G., Song. S.(Bergers,2005). The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 7(4), 452–464.
3. Bi, L., Yang, L., Narsimhan, G., Bhunia, A.K., Yao, Y(Yao,2011). Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J.Control. Rel. 150(2), 150–156.
4. Bilati, U., Allemann, E., Doelker, E.( Bilati,2005). Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSci Tech., 6(4), E594–604.
5. Bj¨orn, C., Noppa, L., Salomonsson, al. (Bj¨orn,2015). Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds. Int. J. Antimicrob. Agents, 45(5), 519–524.
6. Chellgren, B.W., Creamer, T.P. (Chellgren,2006). Side-chain entropy effects on protein secondary structure formationProteins 62(2), 411–420.
7. Chereddy, K.K., Her, C-H., Comune, (Chereddy,2014). PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J.Control. Rel. 194, 138–147.
8. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin-Scott, H.M. (Lappin-Scott,1995) Microbial biofilms. Annu. Rev. Microbiol.,49 (1), 711–745.
9. Cuña, M., Alonso-Sandel, M., Remuñán-López, C., Pivel, J.P., Alonso-Lebrero, J.L., Alonso, M.J.( Alonso,2006). Development of phosphorylated glucomannan-coated chitosan nanoparticles as nanocarriers for protein delivery. J Nanosci Nanotechnol., 6(9-10), 2887–95.
10. Des, Rieux. A., Fievez, V., Garinot, M., Schneider, Y.J., Préat, V. (Garinot,2006). Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 116(1), 1–27.
11. Eley, J.G., Mathew, P.( Eley,2007). Preparation and release characteristics of insulin and insulin-like growth factor-one from polymer nanoparticles. J Microencapsul., 24(3), 225–34.
12. Foldvari, M., Badea, I., Kumar, al. (Kumar,2011).Biphasic vesicles for topical delivery of interferon alpha in human volunteers and treatment ofpatients with human papillomavirus infections. Curr. Drug Deliv., 8(3), 307–319.
13. Ghahary, A., Tredget, E.E., Shen, Q., Kilani, R.T., Scott, P.G., Takeuchi, M.( Takeuchi,2000). Liposome associated interferon-alpha-2b functions as ananti-fibrogenic factor in dermal wounds in the guinea pig. Mol.Cell Biochem. 208(1), 129–137.
14. Hancock, R.E., Sahl, H.G.( Hancock,2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24(12), 1551.
15. Iqbal, J., Vigl, C., Moser, G., Gasteiger, M., Perera, G., Bernkop-Schnürch, A.( Perera,2011). Development and in vivo evaluation of a new oral nanoparticulate dosage form for leuprolide based on polyacrylic acid. Drug Deliv., 18(6), 432–40.
16. James, G.A., Swogger, E., Wolcott, (Swogger,2008). Biofilms in chronic wounds. Wound Repair Regen., 16(1), 37–44.
17. Kafka, A.P., McLeod, B.J., Rades, T., McDowell, A.( Rades,2011). Release and bioactivity of PACA nanoparticles containing D-Lys(6)-GnRH for brushtail possum fertility control. J Control Release., 149(3), 307–13.
18. Lee, Y.W., Park, M.K., Shin, J.R., Lim, K.J., Cho, J.H., Kim, S.C. (Park,2014). Efficacy of the designer antimicrobial peptide SHAP1 in wound healing andwound infection. Amino Acids, 46(10), 2333–2343.
19. Li, H., An, J.H., Park, J.S., Han, K. (Park,2005).Multivesicular liposomes for oral delivery of recombinant human epidermal growth factor. Arch. PharmRes., 28(8), 988–994.
20. Mahapatro, A., Singh, D.K. (Mahapatro,2011), Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol., 9:55.
21. Makhlof, A., Werle, M., Tozuka, Y., Takeuchi, H.( Tozuka,2010). Nanoparticles of glycol chitosan and its thiolated derivative significantly improved the pulmonary delivery of calcitonin. Int J Pharm., 397(1-2)., 92–5.
22. Mukherjee, B., Santra, K., Pattnaik, G., Ghosh, S.( Mukherjee,2008). Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int J Nanomedicine., 3(4), 487–96.
23. Patel, A., Cholkar, K., Vibhuti, A., Mitra, A.K. (Vibhuti,2012). Ocular drug delivery systems: An overview. World J Pharmacol, 2(2),47–64.
24. Patil, S., Vhora, I., Amrutiya, J., Lalani, R., Misra, A. (Amrutiya,2015). Role of nanotechnology in delivery of protein and peptide drugs. Curr. Pharm. Des., 21(29), 4155–4173.
25. Piras, A.M., Maisetta, G., Sandreschi, al. (Sandreschi,2015) Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-termantibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front. Microbiol. 6, 372.
26. Poindexter, B.J. (Poindexter,2005). Immunofluorescence deconvolution microscopy and image reconstruction of human defensins in normal and burnedskin. J. Burns Wounds 4, e7.
27. Rappolee, D.A., Mark, D., Banda, M.J., Werb, Z. (Werb,1988). Wound macrophags express TGF-a and other growth factors in vivo: analysis by mRNA phenotyping. Science, 241(4866), 708–12.
28. Santander-Ortega., Manuel, J. Csaba, N., González, L., Bastos-González, D., Ortega-Vinuesa, J.L., Alonso, Maria, J.( Maria,2010). Protein-loaded PLGA–PEO blend nanoparticles: encapsulation, release and degradation characteristics. Colloid Polym Sci., 288(2), 141–150.
29. Scott, M.G., Davidson, D.J., Gold, M.R.,Bowdish, D., Hancock, R.E.( Davidson,2002). The human antimicrobial peptide LL-37 is multifunctional modulatorof innate immune responses. J. Immunol. 169(7), 3883–3891.
30. Shai, Y.( Shai,2002). Mode of action of membrane active antimicrobial peptides. Biopolymers, 66(4), 236–248.
31. Shukla, A., Stephanopoulos, G., Hammond, P.( Hammond,2009). Antimicrobial peptide delivery from degradable polymer thin films. 3-5 A.
32. Silva, J.P., Dhall, S., Garcia, M.etal. (Silva,2015).Improved burn wound healing by the antimicrobial peptide LLKKK18 released from conjugates withdextrin embedded in a carbopol gel. Acta Biomater., 26, 249–262.
33. Singer, A.J., Clark, R.A.( Clark,1999). Cutaneous wound healing. N. Engl. J. Med., 341(10), 738–746.
34. Sinsuebpol, C., Chatchawalsaisin, J., Kulvanich, P.( Sinsuebpol,2013). Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery. Drug Des DevelTher., 7:861–73.
35. Steinstraesser, L., Ring, A., Bals, R., Steinau, H-U., Langer, S. (Steinstraesser,2006). The human host defense peptide LL37/hCAP accelerates angiogenesis inPEGT/PBT biopolymers. Ann. Plast. Surg. 56(1), 93–98.
36. Steinstraesser, L., Tack, B.F., Waring, al. (Steinstraesser,2002). Activity of novispirin G10 against Pseudomonas aeruginosain vitro and in infected burns.Antimicrob. Agents Chemother., 46(6), 1837–1844.
37. Sung, H.W., Sonaje, K., Liao, Z.X., Hsu, L.W., Chuang, E.Y.( Sonaje,2012). pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. AccChem Res, 45(4), 619–29.
38. Wolcott, R., Rhoads, D., Bennett, al.( Bennett,2010).Chronic wounds and the medical biofilm paradigm. J. Wound Care 19(2), 45–53.
39. Yadav, S.C., Kumari, A., Yadav, R.( Kumari,2011). Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation, Peptides. 32(1), 173–87.
40. Yeaman, M.R., Yount, N.Y.( Yount,2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 55(1), 27–55.
41. Zhang, Q., Shen, Z., Nagai, T.( Shen,2001). Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm., 218(1-2), 75–80.
How to Cite
chauhan, D., Patel, K., Sodha, R., Vadhwani, K. and Daxini, K. 2019. Dermal Delivery of Protein and Peptides: Recent advances and clinical outcome. PharmaTutor. 7, 7 (Jul. 2019), 21-31.