Apicoplast: a brilliant focus for antimalarial drug development

  • Souvik Mukherjee Central University of Punjab
  • Deepronil Roy Central University of Punjab
  • Suman Das Central University of Punjab
Keywords: Malaria, apicoplast, fatty acid, heme, isoprenoids, biosynthesis, combination therapy

Abstract

Malaria is a lifestyle-threatening tropical disorder, due to the intracellular parasite Plasmodium falciparum. The sector health employer counts malaria as one of the pinnacle ten reasons of worldwide demise. The unavailability of a successful malaria vaccine and the ever-increasing times of drug resistance in the malaria parasite call for the invention of new targets inside P. falciparum for the development of next generation antimalarial drug. Fortuitously, all apicomplexan parasites, along with P. falciparum harbor a relict, non-photosynthetic plastid referred to as the apicoplast. The apicoplast is a semi-self-sustaining organelle within P. falciparum, containing a 35 kb circular genome. Notwithstanding a genome of its own, majority of the apicoplast proteins are encoded by means of the parasite nucleus and imported into the apicoplast. The organelle has been proven to be vital to P. falciparum survival and the loss the apicoplast manifests as a ‘not on time loss of life’ response in the parasite. The apicoplast has advanced out of cyanobacteria in a complicated, two step endosymbiotic event. As a result, the architecture and the gene expression machinery of the apicoplast is pretty bacteria-like and is at risk of a wide variety of antibiotics consisting of fosmidomycin, tetracycline, azithromycin, clindamycin and triclosan. The biosynthetic pathways for isoprenoids, fatty acids and heme function within the malaria apicoplast, making the organelle a top notch goal for drug development. This review specializes in the evolution, biology and the essentiality of the apicoplast inside the malaria parasite and discusses a number of the current achievements toward the layout and discovery of apicoplast focused antimalarial drug.

Author Biographies

Souvik Mukherjee, Central University of Punjab

Department of Pharmaceutical Sciences & Natural Products,
Central University of Punjab,
Bathinda, Punjab, India

Deepronil Roy, Central University of Punjab

2Department of Animal Sciences,
Central University of Punjab,
Bathinda, Punjab, India

Suman Das, Central University of Punjab

Department of Human Genetics & Molecular Medicine,
Central University of Punjab,
Bathinda, Punjab, India

References

1. Alonso, P., & Noor, A. M. The global fight against malaria is at crossroads. The Lancet, 2017, 390 (10112),
2532-2534.
2. Bhatt, S., Weiss, D., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Eckhoff, P, The effect of malaria
control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526(7572), 207.
3. Brochet, M., Collins, M. O., Smith, T. K., Thompson, E., Sebastian, S., Volkmann, K., Berriman, M.
Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca2+ signals at key decision
points in the life cycle of malaria parasites. PLoS biology, 2014, 12(3), e1001806.
4. Burger, R. J., van Eijk, A. M., Bussink, M., Hill, J., & ter Kuile, F. O. Artemisinin-based combination therapy
versus quinine or other combinations for treatment of uncomplicated Plasmodium falciparum malaria in the second and third trimester of pregnancy: a systematic review and meta-analysis. Paper presented at the Open
forum infectious diseases, 2016
5. Chakraborty, A. . Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for
antimalarial drug development. Life sciences, 2016, 158, 104-110.
6. Chibale, K. , How Africa is helping expand the global antimalarial drug pipeline: health research, 2016, Quest,
12(3), 22-23.
7. Diagana, T. T. Supporting malaria elimination with 21st century antimalarial agent drug discovery. Drug
discovery today, 2015, 20(10), 1265-1270.
8. Gamo, F.-J. Antimalarial drug resistance: new treatments options for Plasmodium. Drug Discovery Today:
Technologies, 2014, 11, 81-88.
9. Goodman, C. D., Su, V., & McFadden, G. I. The effects of anti-bacterials on the malaria parasite Plasmodium
falciparum. Molecular and biochemical parasitology, 2007, 152(2), 181-191.
10. Götz, A., Ty, M., Chora, A. F., Zuzarte-Luís, V., Mota, M. M., & Rodriguez, A. Innate Immunity to Malaria
Malaria 2017, (pp. 3-25): Springer.
11. Hemingway, J., Shretta, R., Wells, T. N., Bell, D., Djimdé, A. A., Achee, N., & Qi, G. Tools and strategies for
malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS biology,
2016, 14(3), e1002380.
12. Insecticide, m. R. C. P. o., & Resistance, D. malERA: An updated research agenda for insecticide and drug
resistance in malaria elimination and eradication. PLoS medicine, 2017, 14(11), e1002450.
13. Jackson, B. D., & Black, R. E. (2017). A literature review of the effect of malaria on stunting. The Journal of
nutrition, 2017, 147(11), 2163S-2168S.
14. Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., . . .
15. Lichtenthaler, H. K. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial
drugs. Science, 1999, 285(5433), 1573-1576.
16. Ke, H., Lewis, I. A., Morrisey, J. M., McLean, K. J., Ganesan, S. M., Painter, H. J., . . . Vaidya, A. B. Genetic
investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle. Cell reports, 2015,
11(1), 164-174.
17. Lim, L., Sayers, C. P., Goodman, C. D., & McFadden, G. I. (2016). Targeting of a transporter to the outer
apicoplast membrane in the human malaria parasite Plasmodium falciparum. PloS one, 2016, 11(7), e0159603.
18. Siciliano, G., & Alano, P.. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in
fundamental and applied research. Frontiers in microbiology, 6, 391.
19. Tesfaye, S., Prakash, B., & Singh, P. P. . Apicoplast Biosynthetic Pathways as Possible Targets for Combination
Therapy of Malaria. Journal of Pharmacy and Pharmacology, 2015, 3(1), 101-115.
20. Thwing, J., Eckert, E., Dione, D. A., Tine, R., Faye, A., Yé, Y., Diouf, M. B. Declines in Malaria Burden and AllCause
Child Mortality following Increases in Control Interventions in Senegal, 2005–2010. The American journal
of tropical medicine and hygiene, 2017, 97(3_Suppl), 89-98.
21. Uddin, T., McFadden, G. I., & Goodman, C. D. Validation of Putative Apicoplast-Targeting Drugs Using a
Chemical Supplementation Assay in Cultured Human Malaria Parasites. Antimicrobial agents and chemotherapy,
2018, 62(1), e01161-01117.
22. Visser, B. J., Wieten, R. W., Kroon, D., Nagel, I. M., Bélard, S., van Vugt, M., & Grobusch, M. P. Efficacy and
safety of artemisinin combination therapy (ACT) for non-falciparum malaria: a systematic review. Malaria
journal, 2014, 13(1), 463.
23. Wiley, J. D., Merino, E. F., Krai, P. M., McLean, K. J., Tripathi, A. K., Vega-Rodríguez, J., Cassera, M. B.
Isoprenoid precursor biosynthesis is the essential metabolic role of the apicoplast during gametocytogenesis in
Plasmodium falciparum. Eukaryotic cell, 2015, 14(2), 128-139.
24. Wu, W., Herrera, Z., Ebert, D., Baska, K., Cho, S. H., DeRisi, J. L., & Yeh, E. A chemical rescue screen identifies
a Plasmodium falciparum apicoplast inhibitor targeting MEP isoprenoid precursor biosynthesis. Antimicrobial
agents and chemotherapy, 2015, 59(1), 356-364
Published
2018-05-01
How to Cite
[1]
Mukherjee, S., Roy, D. and Das, S. 2018. Apicoplast: a brilliant focus for antimalarial drug development. PharmaTutor. 6, 5 (May 2018), 13-22. DOI:https://doi.org/10.29161/PT.v6.i5.2018.13.
Section
Articles