Microneedles: an approach in transdermal drug delivery: a Review

  • Devender Sharma Hi – Tech college of pharmacy
Keywords: transdermal, needles, microneedles, skin, drug delivery, permeation, dissolving microneedles, systemic circulation, hydrogel-forming microneedles


Transdermal drug delivery carried out a promising carrier in the transport of drugs to get direct access across the skin deep into the systemic circulation. Transdermal drug delivery have a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. It gives attraction to many researchers due to various biomedical advantages. Due to the limitation of oral drug delivery system and the pain related with the use of needles in case of injections, drug delivery research has tremendously oriented towards the transdermal route. Delivery of drugs via transdermal route has proved to be the convenient route for various clinical implications. The objective of the present review is to focus on newly innovations in transdermal drug delivery systems which can create a platform for the research and development of pharmaceutical drug dosage form for efficient transdermal delivery. In this review, we tell about different types of microneedles are described and their methods of fabrication. Microneedles can be fabricated in different forms like hollow, solid, and dissolving. There are also hydrogel-forming microneedles.  In relation to hydrogel-forming microneedles, special attention, these are innovative microneedles which does not contain drugs but imbibe interstitial fluid to form continuous conduits between dermal microcirculation and an attached patch-type reservoir. Regulatory authorities approved several microneedles for clinical uses are also examined. The last part of this review discusses concerns and challenges regarding microneedles use.

Author Biography

Devender Sharma, Hi – Tech college of pharmacy

Hi – Tech college of pharmacy,
Chandrapur, Maharashtra, India


1. Dhamecha DL, Rathi AA, Saifee M, Lahoti SR, Dehghan MHG. Drug vehicle based approaches of penetration enhancement. Int J Pharm Pharma Sci 2009; 1(1): 24-46.
2. Nida Akhtar, Microneedles: An Innovative Approach to Transdermal Delivery. International journal of pharmacy and pharmaceutical sciences. Vol.6 issue 4,2014: 18-25.
3. Ranade VV. Drug delivery systems: transdermal drug delivery. J Clin Pharmacol 1991; 31(5): 401-418.
4. Lhernould M.S., Deleers M., Delchambre A. Hollow polymer microneedles array resistance and insertion tests. Int. J. Pharm. 2015; 480:152–157. doi:
5. Sharma N, Bharat PS, Mahajan U. Blooming pharma indystry with transdermal drug delivery system. Indo Global J Pharm Sci 2012; 2(3): 262-278.
6. Rani S, Saroha K, Syan N, Mathur P. Transdermal patches a successful tool in transdermal drug delivery system: an overview. Der Pharmacia Sinica 2011; 2(5): 17-29.
7. Arunachalam A, Karthikeyan M, Kumar M, Prathap M, Sethuraman S, Kumar SA, Manidipa S. Transdermal drug delivery system: a review. Curr Pharm Res 2010; 1(1): 70-81.
8. Ehdaie B. Enhanced delivery of transdermal drugs through human skin with novel carriers. J Pharm Biomed Sci 2011;1(8): 161-166.
9. Prausnitz MR, Langer R. Transdermal Drug delivery. Nature Biotechnol 2008; 26: 1261-1268.
10. Patel D, Chaudhary SA, Parmar B, Bhura N. Transdermal drug delivery system: a review. Pharm Innov 2012; 1(4): 66-75.
11. Lhernould M.S., Deleers M., Delchambre A. Hollow polymer microneedles array resistance and insertion tests. Int. J. Pharm. 2015;480:152–157. doi: 10.1016/j.ijpharm.2015.01.019.
12. Andrews S.N., Jeong E., Prausnitz M.R. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm. Res. 2013;30:1099–1109. doi: 10.1007/s11095-012-0946-7.
13. Jepps O.G., Dancik Y., Anissimov Y.G., Roberts M.S. Modeling the human skin barrier—Towards a better understanding of dermal absorption. Adv. Drug Deliv. Rev. 2013;65:152–168. doi: 10.1016/j.addr.2012.04.003.
14. Olatunji O., Das D.B., Garland M.J., Belaid L., Donnelly R.F. Influence of array interspacing on the force required for successful microneedle skin penetration: Theoretical and practical approaches. J. Pharm. Sci. 2013;102:1209–1221. doi: 10.1002/jps.23439.
15. Cheung K., Han T., Das D.B. Effect of Force of Microneedle Insertion on the Permeability of Insulin in Skin. J. Diabetes Sci. Technol. 2014;8:444–452. doi: 10.1177/1932296813519720.
16. Kim Y.C., Park J.H., Prausnitz M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012;64:1547–1568. doi: 10.1016/j.addr.2012.04.005.
17. Verbaan F.J., Bal S.M., van den Berg D.J., Dijksman J.A., van Hecke M., Verpoorten H., van den Berg A., Luttge R., Bouwstra J.A. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J. Control. Release. 2008;128:80–88. doi: 10.1016/j.jconrel.2008.02.009.
18. Vinayakumar K.B., Hegde G.M., Nayak M.M., Dinesh N.S., Rajanna K. Fabrication and characterization of gold coated hollow silicon microneedle array for drug delivery. Microelectron. Eng. 2014;128:12–18. doi: 10.1016/j.mee.2014.05.039.
19. Gupta J., Gill H.S., Andrews S.N., Prausnitz M.R. Kinetics of skin resealing after insertion of microneedles in human subjects. J. Control. Release. 2011;154:148–155. doi: 10.1016/j.jconrel.2011.05.021.
20. Henry S., McAllister D.V., Allen M.G., Prausnitz M.R. Microfabricated microneedles: A novel approach to transdemal drug delivery. J. Pharm. Sci. 1998;87:922–925. doi: 10.1021/js980042+.
21. Wang Q., Yao G., Dong P., Gong Z., Li G., Zhang K., Wu C. Investigation on fabrication process of dissolving microneedle arrays to improve effective needle drug distribution. Eur. J. Pharm. Sci. 2015;66:148–156. doi: 10.1016/j.ejps.2014.09.011.
22. Sullivan S.P., Koutsonanos D.G., del Pilar Martin M., Lee J.W., Zarnitsyn V., Choi S.-O., Murthy N., Compans R.W., Skountzou I., Prausnitz M.R. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 2010;16:915–920. doi: 10.1038/nm.2182.
23. Hong X., Wei L., Wu F., Wu Z., Chen L., Liu Z., Yuan W. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Dev. Ther. 2013:945–952.
24. Chen M.-C., Huang S.-F., Lai K.-Y., Ling M.-H. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials. 2013;34:3077–3086. doi: 10.1016/j.biomaterials.2012.12.041.
25. Pearton M., Saller V., Coulman S.A., Gateley C., Anstey A.V., Zarnitsyn V., Birchall J.C. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J. Control. Release. 2012;160:561–569. doi: 10.1016/j.jconrel.2012.04.005.
26. Khan H., Mehta P., Msallam H., Armitage D., Ahmad Z. Smart microneedle coatings for controlled delivery and biomedical analysis. J. Drug Target. 2014;22:790–795. doi: 10.3109/1061186X.2014.921926.
27. Ma Y., Gill H.S. Coating solid dispersions on microneedles via a molten dip-coating method: development and in vitro evaluation for transdermal delivery of a water-insoluble drug. J. Pharm. Sci. 2014;103:3621–3630. doi: 10.1002/jps.24159.
28. Donnelly R.F., Raj Singh T.R., Alkilani A.Z., McCrudden M.T.C., O’Neill S., O’Mahony C., Armstrong K., McLoone N., Kole P., Woolfson A.D. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: Potential for enhanced patient safety. Int. J. Pharm. 2013;451:76–91. doi: 10.1016/j.ijpharm.2013.04.045.
29. Chen B, Wei J, Tay FEH, Wong YT, Iliescu C. Silicon micro needles array biodegradable tips for transdermal drug delivery. DTIP Mems Moems 2007; 1: 25-27
30. Sheer A, Chauhan M. Ethosomes as vesicular carrier for enhanced transdermal delivery of ketoconazole-formulation and evaluation. IJPI’s J Pharm Cosmetol 2011; 1(3): 1-14.
31. Alvarez-Figueroa M, Delgado-Charro M. Passive and iontophoretic transdermal penetration of methotrexate. Int J Pharm 2001; 212: 101-107.
32. Nolan LMA, Corish J, Corrigan OI, Fitzpatrick D. Iontophoretic and chemical enhancement of drug delivery: Part-I: Across Artificial Membranes. Int J Pharm 2003; 257: 41-55.
33. Bendas ER, Tadros MI. Enhanced transdermal delivery of salbutamol sulphate via ethosomes. AAPS PharmSciTech 2007; 8: 1-15.
34. Saroha K, Nanda S, Rani S. Chemical penetration enhances: a novel approach in transdermal drug delivery system. Int J Curr Pharm Res 2011; 3(4): 5-9.
35. Kumar AV, Kulkarni PR, Raut RA. Microneedles: promising technique for transdermal drug delivery. Int J Pharm Bio Sci 2011; 2(1): 684-708.
36. Tabassum N, Sofi A, Khuroo T. Microneedle technology: a new drug delivery system. Int J Res Pharm Biomed Sci 2011; 2(1): 59-62.
37. Srinivas P, Shanthi CL, Sadanandam MS. Miconeedles patches in drug delivery: a review. Int J Pharm Tech 2010; 2(3): 329-344.
38. Vandervoort J, Ludig A. Microneedles for transdermal drug delivery: a minireview. Front Biosci 2008; 1(13): 1711-1715.
39. Yadav JD. Microneedles: promising technique for transdermaldrug delivery. Int J Pharm BioSci 2011; 2(1): 684-708.
40. Paik SJ, Lim JM, Jung I, Park Y, Byun S, Chung S. A novel microneedle array integrated with a PDMS biochip for micro fluid system. Transducers Solid-State Sensors Actuators Microsys 2003; 2: 1446-1449.
How to Cite
Sharma, D. 2018. Microneedles: an approach in transdermal drug delivery: a Review. PharmaTutor. 6, 1 (Jun. 2018), 7-15. DOI:https://doi.org/10.29161/PT.v6.i1.2018.7.