Biodegradability and waste management of Jaipur Foot

  • Mona Kejariwal R.D. National and W.A. Science College
  • Anil Kumar Jain Santokba Durlabhji Hospital
Keywords: Jaipur foot, Biodegradation, Prostheses

Abstract

Designed in and named after Jaipur, India, the prosthetic foot was designed to be inexpensive, water-resistant, and quick to fit and manufacture. Several field trials case studies were made and this artificial aid was found to be very comfortable and acceptable to the amputee population following floor sitting culture. The quality assertion and standards related to these prostheses at affordable cost assume great significance especially for India and other developing countries. Environmental issues such as biodegradability of various components like microcellular rubber, tread rubber, nylon cord, cushion compound and skin colour rubber and other. It is necessary that biodegradation issues should be widely held at various platforms beside its bioengineering and designing issues for proper handling and storage concerns. Approval standards and quality control should be a part of the development effort prior to regular production and use of these low cost prostheses.

Author Biographies

Mona Kejariwal, R.D. National and W.A. Science College

Department of Botany, R.D. National and W.A. Science College,
Bandra (west), Mumbai, India.

Anil Kumar Jain, Santokba Durlabhji Hospital

Dr. P.K. Sethi Rehabilitation Centre, Santokba Durlabhji Hospital,
Jaipur, Rajasthan, India

References

1. Karunakaran, V.V.; Quality Assurance and Optimization Studies of Light Weight PU Prosthetic Foot; Trends Biomater Artif. Organs ; 2006 ; 19(2); 63-69.
2. Darby R.T and Kaplan A.M.; Fungal susceptibility of polyurethanes; Appl. Microbiol. 1968;16(3);900–905.
3. Tokiwa Yutaka, Buenaventurada P. Calabia, Charles U. Ugwu, and Seiichi Aiba; Biodegradability of Plastics; Int J Mol Sci.; 2009; 10(9): 3722-3742.
4. Tokiwa, Y., Iwamoto, A., Koyama, M.; Development of biodegradable plastics containing polycaprolactone and/or starch; Polym Mats Sci Eng; 1990; 63; 742-746.
5. Crabbe, J.R., Campbell J.R., Thompson L, Walz S.L and Schultz W.W.; Biodegradation of a colloidal ester-based polyurethane by soil fungi. Int Biodeterior Biodegrad; 1994; 33(2); 103-113.
6. Santerre J.P., Labow R.S., Duguay D.G., Erfle D. and Adams G.A.; Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes; J. Biomed. Mater. Res; 1994; 28(10); 1187-1199.
7. Wang G.B., Santerre J.P. and Labow R.S.; High–performance liquid chromatographic separation and tandem mass spectrometric identification of breakdown products associated with the biological hydrolysis of a biomedical polyurethane; J. Chromatogr. B Biomed. Sci. Appl; 1997; .698(1-2); 69-80.
8. Zheng Y., Yanful E.K., Bassi A.S.; A review of plastic waste biodegradation; Cri Rev Biotechnol; 2005; 25(4); 243-250.
9. Pranamuda, H., Tokiwa, Y. and Tanaka, H.; Microbial degradation of an aliphatic polyester with a high melting point, poly(tetramethylene succinate); Appl. Environ. Microbiol.; 1995; 61(5); 1828-1832.
10. Jarerat, A. and Tokiwa, Y.; Degradation of poly (tetramethylene succinate) by thermophilic actinomycetes; Biotechnol. Lett.; 2001; 23(8); 647-651.
11. Kinoshita S., Kageyama S., Iba K., Yamada Y. and Okada H.; Utilization of a cyclic dimmer and linear oligomers of ε-amino caproic acid by Achromobacter guttatus K172; Agric. Boil. Chem.; 1975; 39(6); 1219-1223.
12. Kanagawa K., Negoro S., Takada N. and Okada H.; Plasmid dependence of Pseudomonas sp. strain NK87 enzymes that degrade 6-aminohexanoaate-cyclic dimer; J. Bacteriol.; 1989; 171(6); 3181-3186.
13. Deguchi T., Kitaoka Y., Kakzawa M. and Nishida T.; Purification and characterization of a nylon-degrading enzyme; Appl. Environ Microbiol; 1998; 64(4); 1366-1371.
14. Hashimoto K., Sudo M., Ohta K., Sugimura T. and Yamada H.; Biodegradation of nylon 4 and its blend with nylon 6; J. Appl. Polym. Sci.; 2002; 86(9); 2307-2311.
15. Kawasaki N., Atsuyoshi N., Naoko Y., Takeda S., Kawata Y., Yamamoto N. and Aiba S. ; Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4 ; Polymer; 2005; 46 (23); 9987-9993.
16. Yamano N., Nakayama A., Kawasaki N., Yamamoto N. and Aiba S.; Mechanism and characterization of polyamide 4 degradation by Pseudomonas sp.; J. Polym. Environ; 2008; 16(2); 141-146.
17. Tokiwa Yutaka, Buenaventurada P. Calabia, Charles U. Ugwu, and Seiichi Aiba; Biodegradability of Plastics; Int J Mol Sci.; 2009; 10(9): 3722-3742.
18. Tokiwa Y., Iwamoto A. and Koyama M.; Development of biodegradable plastics containing polycaprolactone and/or starch; Polym. Mats. Sci. Eng.; 1990; 63:742–746.
19. Iwamoto A. and Tokiwa Y; Effect of the phase structure on biodegradability of polypropylene/poly(ε-caprolactone) blends; J. Appl. Polym. Sci; 1994; 52(9); 1357-1360.
20. Iwamoto A., Tokiwa, Y.; Enzymatic degradation of plastics containing polycaprolactone; Polym Degrad Stab; 1994; 45(2); 205-213
21. Klimiuk E. and ?ebkowska M.; Biotechnology in protection of environmental (in Polish), 2005; Wydawnictwo Naukowe PWN S.A, Warszawa.
22. Lee J-Y., Roh J.R. and Kim H.S.; Metabolic engineering of Pseudomonas putida for the simultaneous biodegradation of benzene, toluene, and p-xylene mixture; Biotech. Bioengin.; 1994; 43(11); 1146-1152.
23. Tokiwa Y. and Suzuki T.; Hydrolysis of polyesters by lipases; Nature; 1977; 270; 76-78.
24. Kumagai Y. and Doi Y.; Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxybutyrate) with poly(ε -caprolactone), poly(1,4-butylene adipate and poly(vinyl acetate); Polym. Degrad. Stab; 1992; 36(3); 241-248.
25. Nakajima-Kambe T., Onuma F., Kimpara N. and Nakahara T. ; Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source ; FEMS Microbiol. Lett; 1995; 129(1); 39–42.
26. Sethi P. K., Udawat M. P., Kasliwal S. C. And Chandra R. S.; Vulcanized rubber foot for lower limb amputees; Prosthet Orthot Int; 1978; 2(3): 125-136.
27. Arya A. P. and Klenerman. L.; The Jaipur foot; J Bone Joint Surg Br; 2008; 90(11); 1414-1421.
28. Arya A. P., Lees A., Nirula H.C. and Klenerman L.; A biomechanical comparison of the SACH, Seattle and Jaipur feet using ground reaction forces; Prosthetics and Orthotics International; 1995; 19(1); 37-45.
Published
2016-02-01
How to Cite
[1]
Kejariwal, M. and Jain, A.K. 2016. Biodegradability and waste management of Jaipur Foot. PharmaTutor. 4, 2 (Feb. 2016), 41-46.
Section
Articles